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ABSTRACT

Compton imaging is a gamma ray imaging technique that has possible applications

in the nuclear and medical industries. Compton imaging can localize the origin of a

scattered gamma ray, to a cone, using a minimum of two position and energy mea-

surements. The projection of many cones will overlap at a common point leading to

the actual source position. A prototype Compton imager (PCI) has been constructed

at Los Alamos National Laboratory (LANL) that uses a combination of silicon and

CsI detectors. A model of the PCI has been simulated and validated, showing good

agreement with measured data. The angular resolution of the PCI was measured to be

0.156 radians FWHM. Additionally, a method for determining the source-to-detector

distance in the near field has been developed and demonstrated. The algorithm pre-

sented has the ability to determine the source-to-detector distance in the near field

within 1 cm of the actual distance.

While traditional back-projection algorithms are adequate for imaging of single

point-like sources they are not sufficient to resolve extended shapes or closely spaced
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multiple point-like sources. Iterative algorithms may provide the necessary decon-

volution. Maximum Likelihood Expectation Maximization (MLEM) is an iterative

statistical algorithm that reconstructs the most probable source distribution for a

given data set. Normally, MLEM makes computations for each possible combination

of energy and position, however this becomes a prohibitively large problem for both

analysis time and hardware memory limits, depending on the data set. List Mode

MLEM attempts to circumvent the calculation of every combination of energy and

position and relies on the probability of the given data being observed. An algorithm

using List-Mode MLEM is of interest because the number of calculations required

for reconstruction is substantially less than that of other iterative processes but will

enable imaging of both point and extended sources. This type of algorithm has been

written and successfully applied to both experimental data from the PCI and simu-

lations of the PCI. The algorithm will be demonstrated to improve detection of both

point-like and extended sources.
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Chapter 1

INTRODUCTION

Gamma-ray imaging is widely used as a research tool in nuclear medicine and as-

trophysics. Additionally, research in the use of gamma-ray imaging for waste moni-

toring and nuclear nonproliferation began in the 1990s. Since then efforts to develop

better detection technologies has gained increased attention. In particular, imaging

technologies which allow passive gamma-ray detectors to localize sources and reject

backgrounds from irrelevant directions and sources are being sought. This capability

would provide the improved sensitivity needed for sensing nuclear materials from dis-

tances of tens of meters and beyond. Compton imaging was recognized as one such

imaging technique. It is based on the Compton scattering interaction (scattering of

a gamma ray from an electron). Compton scattering preserves information about the

direction and energy of incident gamma rays if the scattering by-products can be

precisely measured. Various Compton imaging designs have been studied for use in

many fields including counterterrorism. One such effort was carried out by the Naval

Research Laboratory along with the University of California at Berkeley based on

their astrophysics expertise. This effort focused on the development of Compton im-

agers that used thick, position sensitive, solid-state detectors [1]. Efforts by Lawrence

1
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Livermore National Laboratory (along with collaborators) included development of

the spectroscopic imager for gamma rays, SPEIR [2], Compton imaging with position

sensitive silicon and germanium detectors [3], and coaxial germanium detectors [4].

There are many situations applicable to homeland security where it is necessary to

localize the position and shape of an unknown source within a closed volume. One

such application is cargo screening, where it is inefficient and costly to open contain-

ers to search for nuclear material. Other applications include screening the contents

of suspicious objects while maintaining a safe distance and passive searching of public

areas where nuclear material may be present.

1.1 Why Compton Imaging?

While Compton imaging is not a new technique, recent advances in material fabri-

cation and signal processing capabilities make building a Compton imaging device

more efficient. Compton imaging is also one choice for a gamma-ray imaging system

capable of performing three-dimensional imaging and provides the means to image

gamma rays without the use of a collimator. Eliminating heavy collimators has the

advantage of reducing the overall weight of the system, which is an important factor

when considering a fieldable device, especially in airborne and space applications.

Compton imaging also increases the field-of-view (FOV) from the small fraction of 4π

for collimated detectors, up to full 360◦ imaging. There are some drawbacks however,

including the medium to high cost.

While most of these factors demonstrate the attractiveness of a Compton imager,

much of the capability of any imaging system hinges on the quality of the algorithms

used to reconstruct data. The goal of this thesis is to present an existing prototype
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Compton imager designed and built at Los Alamos National Laboratory (LANL).

Monte Carlo [5, 6] simulations will be performed and validated against measured

data. If the simulations can accurately model the true response of the laboratory

detector, larger detectors can be designed and modeled confidently to optimize effi-

ciency and cost before construction. In addition algorithms developed to maximize the

information content obtained from the imager will be developed and presented. Im-

age reconstruction algorithms will include both geometric back-projection and max-

imum likelihood methods. Beyond image reconstruction, a method for determining

the source-to-detector distance is needed when imaging sources at unknown positions.

A method for determining the source-to-detector distance was developed in this work

and will be presented.

1.2 Prior Work

Compton imaging has been of interest to researchers in both the medial imaging and

astrophysics communities since the early 1980’s. More recently, the potential value of

Compton imaging for homeland security applications has been recognized. Currently

there are several efforts underway examining how new detector technologies can be

applied to Compton imaging as well as utilizing advanced algorithms to improve the

detection capabilities of current systems.

Wulf et al. [8] at the Naval Research Laboratory (NRL) report the application

of germanium strip detectors for the construction of a Compton telescope. As the

gamma ray’s energy increases, more material is required to stop it. If detectors with

good position and energy resolution are thick enough to have multiple Compton

scatters then the gamma does not need to be fully absorbed. Thicker detectors require
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depth resolution or a large separation between detectors to accurately determine

the scattering angle. Unfortunately, a large separation between detectors reduces the

efficiency of the instrument. Wulf proposed a detector system capable of both stopping

low energy gamma rays completely and using multiple Compton scatters for high-

energy gamma rays, however this requires expensive electronics and complex event

reconstruction algorithms.

Similarly, Vetter et al. [9] at Lawrence Livermore National Laboratory (LLNL)

have developed an imaging system using position-sensitive high-purity germanium

(HPGe) and lithium drifted silicon detectors (Si(Li)) [10]. This system should allow for

imaging of gamma ray sources with higher sensitivity than collimator based systems

with the use of advanced 3D gamma ray tracking techniques. They have implemented

a Compton camera built of a single double-sided strip HPGe detector with a strip

pitch of 2 mm. They report three dimensional position resolution of 0.5 mm at 122

keV using simple pulse shape analysis techniques. Not only did they construct the

detector system but they implemented maximum likelihood reconstruction procedures

to optimize image quality with potential applications outside of Compton imaging.

This technique will be discussed in section 6.2 of this thesis.

For space applications, Tanaka et al. [11] at the Institute of Space and Astronau-

tical Science (JAXA) have developed a Si/CdTe semiconductor Compton telescope.

This effort was aimed at developing a Compton telescope based on high resolution

silicon and CdTe imaging devices in order to obtain a high sensitivity astrophysical

observation in the sub-MeV gamma-ray region. The Compton telescope consists of a

double-sided silicon strip detector (DSDD) surrounded by CdTe pixel detectors. Sim-

ilar to the LANL prototype Compton imager [12], Tanaka uses silicon as a scattering
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detector but uses CdTe as absorbing detectors rather than CsI.

In 2004 Xu et al. of the University of Michigan proposed a unique method of

Compton imaging [13]. In their method, the use of a single CdZnTe (CZT) semi-

conductor detector with 3D position resolution, as well as energy information of each

interaction, is used to perform Compton imaging. The detector used is a single 15 x 15

x 10 mm crystal of CZT. Since any point in the detector can be the scatter position,

it allows them to do 4π imaging in the near-field. This is a novel approach because

it is the first semiconductor based 4π Compton imaging system. They also worked

to improve on the algorithms used in Compton imaging, attempting to reconstruct

images using filtered back-projection and maximum likelihood techniques.

Aprile from Columbia University and collaborators developed a Compton tele-

scope for space applications called LXeGRIT [14]. LXeGRIT was the first Compton

telescope to perform complete 3D reconstruction of the sequence of interactions of

individual gamma rays in a single, position-sensitive, liquid xenon time projection

chamber for space applications. Characterization of LXeGRIT included both labora-

tory and balloon flight missions.

Each of the examples of Compton imaging given have drawbacks associated. The

use of HPGe detectors is costly due to cooling constraints. CZT is still a relatively

new and expensive material that is not available in large quantities. Also, commer-

cially available CZT rarely operates as expected. In addition, the angular uncertainty

associated with measurements taken from the currently available small CZT crystal

sizes can be large. Silicon is an excellent room temperature detector but is ineffi-

cient at stopping high-energy gamma rays. All of these factors come into play when

designing a Compton imager. The LANL prototype Compton imager (PCI) is a com-
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bination of some of the elements presented here with a focus on improved angular

resolution, simulations and advanced algorithm development. This thesis will focus

on the operation and performance characteristics of the PCI as well as algorithm

development. However, before an imaging system can be constructed there must be

an understanding of the physical interaction processes occurring in the detector.

1.3 Interaction Processes

Understanding the relevant interaction processes is a necessary step towards being

able to reconstruct Compton camera data. The three major interactions relevant to

Compton cameras are photoelectric absorption, Compton scattering and pair pro-

duction. Each of the three processes has an interaction probability which depends on

photon energy and the material. Figure 1.1 plots the attenuation values (cm2/g) for

both CsI (left) and silicon (right) [15]. It can be seen that Compton scattering is the

dominant gamma ray interaction process in silicon between 0.1 and 10 MeV and that

photoelectric absorption is the dominant process in CsI below about 0.3 MeV.

1.3.1 Photoelectric Absorption

Photoelectric absorption is a process in which photons interact with bound electrons

in an absorber atom, usually tightly bound K shell electrons. Following absorption,

the incident photon produces a photoelectron. The photoelectron emerges with energy

Ee, as described by equation 1.1, where Eγ is the gamma ray energy and Eb is the

binding energy of the photoelectron, or the energy required to remove it from its

shell [16]. Photoelectric absorption is the dominant interaction mechanism for low-

energy gamma rays.
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Figure 1.1: Photon attenuation values for CsI (left) and silicon (right).

Ee = Eγ − Eb (1.1)

1.3.2 Compton Scattering

Compton, or incoherent scattering, was first explained by Arthur Compton in 1923

[17]. It was a significant discovery and earned him the Nobel prize in Physics. A key

reason for giving him the Nobel prize was his recognition of the fact that a photon

could behave like a particle in some circumstances. Compton scattering is an interac-

tion process by which there is a decrease in energy, or increase in wavelength, of an

incident photon when it elastically scatters off an electron in matter. The interaction

between the photon and an electron in the scattering material results in a portion

of the initial photon energy being imparted to the electron, causing it to recoil and
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the photon continuing on in a direction different from the original direction. Figure

1.2 shows a schematic of the Compton interaction where Eγ is the incident photon

energy, E ′γ is the scattered photon energy, E ′e is the energy of the recoil electron, θγ

is the photon scattering angle and φe is the recoil electron scattering angle.

Figure 1.2: The Compton scattering interaction.

The change in direction of the photon is proportional to the energy imparted to

the electron and can be calculated. Compton scattering is the dominant interaction

mechanism for medium energy photons (0.5 to 3.5 MeV) in most materials. The

kinematics of Compton scattering can be derived using conservation of energy (1.2)

and momentum. Although the target electron does have non-zero initial momentum,

its initial momentum is not known. As a result, the initial total energy of the electron

is assumed to be its rest energy (0.511 MeV) and its momentum 0. Taking these

assumptions into account, conservation of momentum can be expressed in the form

of (1.3).

Eγ + Ee = E ′γ + E ′e (1.2)
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~Pγ = ~P ′γ + ~P ′e (1.3)

Solving equations 1.2 and 1.3 the relationship between photon energy and scat-

tering angle can be obtained and is known as the Compton scattering equation [17],

where me is the rest mass energy of an electron and c is the speed of light. The

Compton scattering formula is shown in Eq. 1.4.

cos θγ = 1 +
mec

2

E ′e + E ′γ
− mec

2

E ′γ
(1.4)

1.3.3 Pair Production

Another process to be considered in a Compton camera system is pair production.

Pair production is the creation of an electron and positron from a photon. This process

occurs as a result of the interaction of the photon with the electromagnetic field of

the nucleus of a target atom. This interaction can also take place with an electron but

only at higher energies that are not of interest for Compton imaging. Pair production

can only occur when the amount of energy available is greater than or equal to the rest

mass energy of the pair (1.022 MeV). Figure 1.3 shows the nuclear pair production

interaction where θ is the polar angle of both the exiting position and electron.

1.3.4 Doppler Broadening

Doppler broadening is an effect brought on by the electrons involved in the Compton

scatter interaction. Equation 1.4 is based on the assumption that the electrons are

initially free or unbound. The electrons, however, are neither free nor at rest, but

in motion and bound to a nucleus [19]. This has several effects on the kinematics of
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Figure 1.3: The nuclear pair production interaction.

the Compton scatter. First, the total scattering probability changes as defined by the

Klein-Nishina scattering cross-section [20]. Second, the scattering angle distribution

changes, and finally the energy distribution between the electron and the gamma

ray changes. All of these consequences give rise to a fundamental, lower limit for

the angular resolution of a Compton camera. It is safe to assume that in the case

of the PCI (and any other detector) this effect is uncorrectable. In the case of the

PCI however, the effect is generally masked by the finite energy resolution of the

silicon and CsI detectors and the size of the CsI(Tl) elements. Also, the effect is most

pronounced at low-energy (<150 keV).

Since the effects of Doppler broadening are inherent to a material, as the atomic

number (Z) of a material increases, the effects of Doppler broadening increase. The

choice of silicon as a scattering detector in the PCI was made because silicon minimizes

the contribution of Doppler broadening to the angular resolution while maintaining

the reasonable energy resolution expected from a room temperature semiconductor

[7].
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Chapter 2

THE LANL PROTOTYPE
COMPTON IMAGER

The LANL built prototype Compton imager (PCI) consists of three silicon scattering

detectors and a backplane of CsI absorbing detectors, separated by an adjustable

distance. Incident gamma rays are expected to Compton scatter in the thin silicon

detectors and photo-absorb in the CsI array. Figure 2.1 shows a drawing of the com-

plete PCI. The silicon planes are housed in light-tight, plastic bellows because of their

high sensitivity to light. This chapter will describe both the silicon and CsI detector

elements as well as readout electronics. Additionally, signal processing, triggering and

data acquisition will be discussed.

2.1 Silicon Scattering Detectors

The silicon planes were fabricated at Brookhaven National Laboratory. Silicon was

chosen as the scattering detector material because its properties as a radiation de-

tector are well known and it is suitable for use at room temperature. Also, it has

reasonably good energy resolution and is a low Z material which minimizes Doppler

broadening [18]. Each of the three silicon scattering planes is mounted on an indi-
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Figure 2.1: The LANL prototype Compton imager. The silicon is inside the bellows
(left side) and the CsI is inside the box on the right. The holes on the CsI array are
only present on the back side of the array.

vidual circuit board which contains the readout electronics and slides independently

on nylon rods for easy adjustment of the spacing. Figure 2.2 shows the three silicon

scattering detectors stacked together in a testbed apparatus with attached electronics.

2.1.1 Silicon Geometry

Each scattering plane is pixilated into a 16 x 20 array of 3 x 3 mm PN-type active

silicon pads. The active area of each plane is approximately 48 x 60 mm. The thickness

of each plane is 300 µm including a 30 µm dead layer. Figure 2.3 shows a schematic

drawing of a single silicon pixel detector (not to scale).
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Figure 2.2: The three silicon scattering detectors stacked together with attached elec-
tronics.

2.1.2 Silicon Electronics

The silicon front-end electronics were purchased pre-assembled, from the IDEAS cor-

poration based on the VA-TA application specific integrated circuit (ASIC) series.

Specifically the PCI uses the Va32-Rich pre-amplifier chip [21] and the Ta-32 dis-

criminator chip [22]. Both chips are 32 channel, low power, fast triggering, ASICs,

and include a fast CR-RC shaper (high and low pass filtering) followed by a level-

sensitive discriminator. There are 10 ASIC chips for each silicon plane. The chips can

be seen in Fig. 2.2 along the edge of the silicon. The trigger signals from each channel

are multiplexed onto a single common trigger output for each chip. In addition, both

chips feature a switchable, higher gain and a trim digital-to-analog converter (DAC)
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Figure 2.3: Silicon pixel detector (not to scale).

on each discriminator.

2.2 CsI Absorbing Detectors

The absorbing plane of the PCI is an array of 42 individually read-out, thallium doped,

cesium iodide crystals (CsI(Tl)) with attached silicon PIN diode. Pre-amplifiers for the

PIN diodes are mounted directly behind the array. The CsI(Tl)/PIN array was pur-

chased pre-assembled from Saint Gobain and is housed in an aluminum box mounted

behind the last silicon plane. CsI was chosen as the absorbing plane for the PCI

because it is one of the brightest scintillator materials at 54 photons/keV and has

high gamma ray stopping power due to its relatively high density (4.51 g/cm2) and

effective Z [23]. CsI is also resistant to thermal and mechanical shock [23]. Each indi-

vidual crystal is read out via silicon PIN photodiode. CsI is well suited for photodiode

readout because most of its emissions are in the long wavelength part of the spectrum

(λ > 500 nm), which is another reason it was chosen. Photodiode readout allows the

detector to operate at relatively low voltage (∼ 60 V). Unfortunately CsI does exhibit
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longer decay time (∼ 1 µs for gamma rays) which makes it a slow scintillator, limiting

the capability to perform high count-rate experiments [23].

2.2.1 CsI Geometry

The CsI(Tl) absorbing plane consists of 7 rows of 6 CsI(Tl) crystals, each 14 x 12 x

10 mm, situated parallel to the imaging plane for a total of 42 detector elements. The

front face of the array is located 8 cm (adjustable) behind the last of the three silicon

scattering planes. Each CsI crystal is wrapped in reflective tape and has an attached

silicon PIN diode for signal pickup. Pre-amplifier modules for the CsI are mounted

behind the array. The entire CsI(Tl)/PIN array is housed in an aluminum enclosure.

Figure 2.4 shows the CsI array with attached preamplifiers taken from GEANT4 [5]

simulations of the PCI (housing is omitted). The CsI(Tl) crystals are seen in front of

the array, silicon PIN diodes are shown directly behind the crystals and are connected

to the preamplifier boards.

Figure 2.4: CsI array and attached preamplifiers used in the PCI (housing is omitted).
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2.2.2 CsI Electronics

Each of the 42 CsI(Tl) crystals is coupled to its own Hamamatsu S3590-01 silicon

PIN photodiode [24]. This particular sensor type was chosen because it has good

sensitivity matching with the light output of CsI scintillators and high quantum

efficiency (85% at 540 nm). Each photodiode has an epoxy resin window and a 10 x 10

mm active area. The output of the photodiode is connected to a Hamamatsu H4083

charge amplifier [25]. The H4083 is a low-noise, compact hybrid charge amplifier

specifically designed to be directly attached to the S3590 series photodiode. The gain

is 22 mV/MeV.

2.3 Data Acquisition

The PCI uses a combination of on-board electronics and computer software for data

acquisition. Signals are processed by the triggering system and then continue on to

the data acquisition computer in blocks where they are then written to a binary file.

Files written by the PCI data aquisition system are processed and imaged offline using

custom LANL software. The silicon, CsI and trigger logic systems will be described

in this section. Figure 2.5 shows the overall logic of the data acquisition system of the

PCI.

2.3.1 Silicon Signal Processing

The outputs of the silicon pixels are split into two components. The first component

which is passed through an 0.2 µs shaping amplifier is called the fast signal. After

shaping the fast signal goes into a leading edge discriminator and into the field pro-

grammable gate array (FPGA) that controls the trigger for silicon data acquisition.
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Figure 2.5: Overall logic of the data acquisition system of the PCI.

The second component of the signal is passed through a 2.0 µs shaping amplifier and

is called the slow signal. After shaping the slow signal goes into a peak-hold circuit.

If the amplitude of the fast signal is above the discriminator threshold, the FPGA

alerts the peak-hold to capture the highest amplitude coming from the slow signal

out of the shaping amplifier. After a pre-determined amount of time (long enough to

ensure capture of the maximum peak amplitude) the signal is sent to an ADC. The

ADC captures the signal and converts it into a value representative of energy. The

ADC value is then sent to the data acquisition computer to be recorded and will later

be converted into energy units in the calibration step of analysis.

2.3.2 CsI Signal Processing

The CsI readout works in much the same way as the silicon. The photodiodes output

a signal to the attached charge sensitive preamplifier, which is then split into two

17



www.manaraa.com

components. The first component, which is passed through a 2 µs shaping amplifier,

is called the fast signal. After shaping, the fast signal goes into a leading edge discrim-

inator followed by the FPGA that controls the trigger for CsI data acquisition. The

second component is passed through a 20 µs shaping amplifier and is called the slow

signal. After shaping, the slow signal goes into the peak-hold circuit. If the amplitude

of the fast signal is above the discriminator threshold, the CsI peak-hold is alerted to

capture the maximum amplitude of the slow signal. The peak-hold then outputs the

maximum amplitude to an ADC where the amplitude is converted to an ADC value

representative of energy deposited in the CsI. The ADC value is sent to the data

acquisition computer to be recorded and will later be converted into energy units in

the calibration step of analysis.

2.3.3 Trigger Logic

The trigger logic of the PCI is controlled by an FPGA and can be configured in many

different ways. Data acquisition can be run with any of the silicon planes alone, or

any combination of the three planes together. Increasing the number of silicon planes

active in the trigger increases the efficiency of the detector. The CsI array can trigger

the PCI alone or trigger in coincidence with a simultaneous signal in the silicon. The

coincidence trigger can be set for any combination of silicon and CsI including any

single silicon plane and the CsI, any two silicon planes and the CsI, or any three silicon

planes and the CsI. In coincidence mode, the trigger condition is controlled by the

CsI. When a CsI signal is above threshold the system waits for a silicon signal to reach

threshold. Once this occurs the system then captures both the silicon and CsI signals

and processes them through the ADC. Only events with at least one interaction in
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both the silicon and CsI are of interest for Compton imaging. The singles triggers (no

coincidence required) are used for calibration and diagnostic purposes.

2.3.4 Data Format

The data acquisition computer records events that satisfy the trigger conditions into

a binary output data file. The resulting data file is separated into blocks for each

recorded event sequence including the detector channel and the associated ADC value

(energy deposited). The readout system operates in a ‘forced’ mode where all channels

are written to disk for each measured event. Forced readout has the effect of adding

pedestals centered at zero energy to measured data since only one channel needs to

be above threshold to trigger the system. These pedestals have a finite width because

of noise in the electronics and must be removed in offline analysis.

2.4 Energy Resolution

Every detector material experiences uncertainty in the measured energy versus the

actual energy deposited. Additionally, signal processing can also add uncertainty to

measured values known as energy resolution. The Silicon and CsI(Tl) detectors have

different energy resolution. Silicon is a semiconductor material so the energy resolution

is fairly stable over the energy range of interest and is assumed to be constant. CsI(Tl)

is a scintillator material and the energy resolution is best described with respect to

gamma-ray energy.

2.4.1 Silicon Resolution

The resolution of the silicon detectors is assumed to be constant with a sigma of

approximately 5 keV, however when triggered in conjunction with the CsI array the
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resolution becomes closer to 36 keV (σ). The degradation of the energy resolution

results from the difference in the rise times of the silicon and CsI signals used in

the trigger circuit which causes ‘jitter’. The rise times are 0.2 µs for silicon and 2.0

µs for CsI. A faster scintillating material such as LaBr3 [26] has been investigated

as an alternative to CsI because of its fast rise time (5 ns) however has not been

implemented due to budgetary constraints. Figure 2.6 shows an exaggerated look at

how the difference in rise times of the silicon and CsI causes degradation of the silicon

resolution.

Figure 2.6: Time jitter caused by the difference in the rise times of the signals. (Not
to scale).
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2.4.2 CsI Resolution

Energy resolution of the CsI is energy dependent. A function that describes this

dependence can be obtained experimentally by plotting the observed photopeak width

as a function of energy deposited. The resolution function for the PCI was determined

using 22Na, 137Cs and 54Mn calibration sources and is given in (2.1) where E is the

energy (in keV) deposited in the CsI. The function given in (2.1) is shown for energies

up to 1500 keV in Fig. 2.7. The form of (2.1) comes from three factors including

a constant electronic noise term (P 2
0 ), a statistical term related to fluxuations in

photoelectron collection and conversion (P1E) and a term related to surface effects

and crystal non-uniformity (P2E
2).

Note the low energy response of the CsI is not represented well in the fit i.e.,

zero energy corresponds to zero uncertainty. While this is most certainly not true,

the resolution function accurately describes measured data in the energy range of

interest (E > 350 keV). The hardware threshold on the CsI is set around 350 keV.

The energy resolution of the CsI is the dominant contribution to the overall energy

resolution of the PCI.

σCsI =
√
P 2

0 + P1E + P2E2 =
√

(5.989× 10−5)2 + 1.934E + (6.190× 10−4)E2 (2.1)
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Figure 2.7: CsI energy resolution (σ) as a function of energy deposited in keV.
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Chapter 3

DATA ANALYSIS

Since output data files from the PCI contain artifacts such as pedestals from the signal

processing, are in terms of ADC values (not energy) and do not include calculations

necessary for imaging, analysis of the data must be performed offline. Data analysis

involves several steps including, subtracting the pedestal from each channel, making

a correction for common-mode noise, calibrating the data, application of additional

noise removal methods and parameter calculations for imaging. A suite of C/C++

programs have been developed for each of these steps. Additionally, a method for

correcting the depth of interaction in the CsI detectors has been implemented.

To begin, data contained in the binary output file from the data acquisition com-

puter (DAQ) must be unpacked into an easily accessible file format. In the case of

the PCI, data are unpacked into a ROOT [27] data tree. Each entry in the tree cor-

responds to a single measured event sequence. For each measured sequence several

variables are calculated, incuding energy deposited, number of non-zero signals (mul-

tiplicity), the x, y and z location of the maximum energy deposit, silicon total energy,

CsI total energy, and the total energy deposited during the event. The specifics of

each step will be detailed in this chapter.
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3.1 Pedestal Subtraction

For each triggered event sequence, the signals in all 1002 detector elements of the

PCI are captured and converted into a 14-bit ADC value representative of energy.

The top bit gives the sign of the value and the other 13 bits give a channel between 1

and 8191. Channel 8192 is “zero” in the 14-bit number. For the majority of channels,

i.e., the detector elements that did not trigger the system, a zero is recorded for the

event, however electronic noise gives rise to signals of non-zero amplitude. Processing

of signals through the ADC that did not trigger the system results in a pedestal peak

centered at zero energy. In order to ensure the integrity of the data, pedestal peaks

must be removed before proceeding further with analysis. Figure 3.1 shows a sample

pedestal created from reading signals from a detector element that did not trigger the

system. For the pedestal shown in Fig. 3.1, zero energy corresponds to ADC channel

8268.

The number of events falling in the pedestal is larger than the number of events

in any other ADC channel. Since any combination of one of the 960 silicon channels

and one of the 42 CsI crystals can trigger recording of events, the majority of the

signals recorded for any single channel will be zero, thus contributing to the pedestal

intensity. The pedestals can be easily located since their intensity is higher than any

real signal. To remove the pedestals, they must first be located.

To locate the pedestal for each detector element, the ADC channel with the largest

number of events is determined. It can be seen from Fig. 3.1 that the intensity of the

pedestal is much greater than any real signal. After the centroid (taken as the max-

imum) of each pedestal has been located, the full-width at half-maximum (FWHM)

is calculated for each pedestal peak by scanning one ADC channel at a time, both
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Figure 3.1: A sample pedestal created from reading zero amplitude signals from a
channel that did not trigger the system.

forward and backward about the calculated maximum ADC channel (pedestal cen-

troid) until the amplitude is less than or equal to one-half the maximum ADC channel

value.

Each pedestal is then fit with a Gaussian function between plus or minus the

FWHM of the pedestal centroid. The lower limit threshold is set at two FWHM

above the peak for silicon and 4 FWHM above the peak for CsI. All values below

that threshold are set to zero. This method assumes that each individual silicon

channel has similar resolution. For some channels the resolution will differ slightly,

resulting in persistent pedestal noise after subtraction or the subtraction of genuine

low-energy signals. The pedestal threshold values are adjustable in the software so the

user can maximize the pedestal subtraction while maintaining as many real signals
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as possible. Figure 3.2 shows an example of a subtracted silicon pedestal where the

dashed line shows the cutoff ADC channel.

Figure 3.2: Example of silicon pedestal subtraction. The dashed line shows the point
where the pedestal was cut. The events with ADC values above the pedestal represent,
in most cases, “real” signals in the silicon detectors and/or noise and background.

3.2 Common-mode Noise Correction

As with most multi-channel systems, the PCI experiences some amount of common-

mode noise (CMN) in both the silicon and CsI detector elements due to noise from

the power supplies and other sources. This affects all input signals equally. CMN can

increase the uncertainty of the recorded signal amplitude by ±Inoise/2 where I is the

maximum amplitude of the noise. Figure 3.3 sketches an example of how noise in the

electronics can affect the captured input signal. Two identical input signals result in

two different recorded signal amplitudes, one too low and one too high.
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Figure 3.3: Example of common-mode noise on an input signal.

The average pedestal deviation for the 960 silicon pads must be calculated sep-

arately from the 42 CsI crystals because it uses an independent power supply and

therefore has a different amount of noise. It should also be noted, the average can be

calculated for the silicon on the ASIC chip level. Each of the 30 silicon ASIC chips

processes signals for 32 detector elements and may experience a different level of noise.

CMN correction takes place during pedestal subtraction. To begin the correction, the

average deviation from the known pedestal location must be averaged over all detec-

tor elements, for each event. The pedestal location for each detector element is known

since it was calculated during the pedestal subtraction.

The difference between the recorded signal and the known pedestal centroid is

then calculated and averaged over all detector elements, for each recorded signal in the
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pedestal only. The method for calculating the average pedestal deviation (∆pedestalj )

of measurement j is shown in (3.1), where Ii,j is the recorded ADC channel for

measurement j in detector element i. Pi is the pedestal centroid of element i and ni

is the number of detector elements used in the summation.

∆pedestalj =

∑
i(Ii,j − Pi)

ni
(3.1)

Only signals that are part of the pedestal should be included in the averaging. For

this reason a safeguard is placed on the difference (Ii,j−Pi) so that only values within

±4σ of the pedestal are used in the calculation. The average pedestal deviation should

be both centered at zero and have a Gaussian shape. Figure 3.4 shows shape of the

distribution is Gaussian in both cases, silicon (left) and CsI (right), however neither

is centered at zero. A possible explanation is systematic noise among the channels,

which likely varies by data set.

Figure 3.4: Average pedestal deviation distribution for silicon (left) and CsI (right).

Now that the average pedestal deviation for each measured event has been calcu-

lated, the correction can be made. For each detector element, the calculated deviation
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is subtracted from the measured ADC channel value. After making the correction

there is a definite improvement in the silicon pedestal width and a modest improve-

ment in the CsI. The un-calibrated spectrum for silicon element 140 is shown in Fig.

3.5. The width of the pedestal is reduced by approximately 15%, a significant im-

provement. Likewise the un-calibrated spectrum for CsI crystal 2 is shown in Fig.

3.6. The width of the pedestal is only reduced by 2.5%. The large, positive tail on

the pedestal implies bad separation between the detector elements with no signal and

those with real signals. This results in a mixing of the real signals with the noise.

Nevertheless, the CMN correction is used for the CsI detectors.

Figure 3.5: Common mode noise correction for silicon element 140 showing a 15%
improvement in pedestal width.
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Figure 3.6: Common mode noise correction for CsI crystal 2 showing a 2.5% improve-
ment in pedestal width.

3.3 Energy Calibration

Before any image reconstruction can be performed the ADC channel values of each

detector element must be converted to an energy value via calibration. The energy

calibration of the silicon detectors must be performed using a low energy check source

because the photopeak efficiency of the thin silicon detectors is very low above 300

keV. Calibration of the CsI detector elements must be performed using sources that

emit gamma rays at energies higher than 250 keV because of the high hardware

thresholds. The three sources used for calibrating the silicon detectors are 241Am,

109Cd and 57Co with gamma-ray emissions at 60, 88 and 122 keV respectively. The

CsI was calibrated using 137Cs, 54Mn and 22Na with gamma ray emissions at 662, 834,

and 511 and 1275 keV respectively. Table 3.1 summarizes the isotopes and energies

30



www.manaraa.com

used to calibrate both the silicon and CsI elements of the PCI.

Table 3.1: Check sources used for calibration of the PCI.
Source Isotope Gamma-ray Energy Application

[keV]
241Am 60 Silicon
109Cd 88 Silicon
57Co 122 Silicon
137Cs 662 CsI
54Mn 834 CsI
22Na 511, 1275 CsI

3.3.1 Silicon Calibration

Once sufficient counts have been measured with each of the sources listed in Table

3.1, the known photopeak positions are fit with a Gaussian function for each of the

960 silicon elements. Several checks to ensure proper detector function are also made

at this time, for example, a channel that does not have a photopeak is not work-

ing correctly and will need to be disabled in the analysis and the trigger for future

data taking runs. Also, the resolution of each channel is measured. If the measured

resolution is greater than expected, then the channel is automatically disabled and

the channel is not used in the calibration. Once all the channels have been fit or

discarded for each source, a linear fit is applied and the number of points used in the

fit is also recorded. For comparison, a calibration is also performed at the ASIC chip

level (32 channels). In the calibration routines there is an option to use the individual

pixel calibration values or those for each ASIC chip. A mixed calibration may also be

performed i.e. if the number of points used in the calibration of a single pixel is less

than three, then the chip calibration is used by default.
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3.3.2 CsI Calibration

Each of the CsI elements is calibrated in the same way as the silicon using the sources

listed in Table 3.1. Since there are only 42 CsI elements total, each channel is indi-

vidually calibrated with a linear fit. Those channels which fail the calibration are

automatically disabled.

3.4 Automatic Noise Rejection

Some channels in the silicon or CsI will be noisy due to low thresholds and electronic

noise. If a channel is consistently triggering the system due to noise rather than actual

photon scatters then the data rate for that channel will be obviously higher than a

channel that is not noisy. In order to detect problems such as this, a routine has

been added to the data analysis suite that calculates the mean trigger rate and the

standard deviation (σ) for all the silicon and CsI detector elements. If any single

channel is more than 5σ above the mean it most likely contains noisy data and can

be discarded confidently as such.

It is important to remove this noise from the data because it will add unwanted

artifacts to reconstructed Compton images. There is no doubt that real events are

hidden in the noise of these channels but the overall effect of including these channels

in the analysis is a net degradation of the images.

3.5 Most Probable Interaction Depth

When interactions in the CsI are processed in the analysis software the position of

the energy deposition is typically assumed to be in the absolute center of the crystal,

but that is only an approximation. While using the x and y position of the center of
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each crystal is the only reasonable choice, there is a most probable z position based

on the energy of the gamma ray incident on the detector that can be used. The

most probable z position is a function of material density, thickness and energy. The

formula shown in Eq. 3.2 gives the most probable interaction depth in centimeters in

a material where the density is ρ in g/cm3, the total attenuation is A in cm2/g from

Ref. [15] and λ = 1/ρA in cm. For the CsI elements in the PCI, z0 is 0.0 cm and zmax

is 1.0 cm. In order to correct the interaction position for the PCI the most probable

depth must be calculated for each measured CsI signal. Figure 3.7 shows the output

(in cm) of the function given in (3.2) for gamma-ray energies from 0 to 1000 keV

where 0 cm represents the front face of the CsI array.

< z >=

∫ zmax
z0

ze−z/λdz∫ zmax
z0

e−z/λdz
=
λ2e−z/λ((−z/λ)− 1)|zmax

z0

−λe−z/λ|zmax
z0

(3.2)
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Figure 3.7: Most probable interaction depth in CsI as a function of energy in keV. 0
cm represents the front face of the CsI array.
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Chapter 4

SIMULATIONS

The ability to accurately simulate a detector system is critical in understanding the

behavior of the detector. Simulations can be used to diagnose problems in the hard-

ware, improve algorithm functionality and allow the user to simulate scenarios that

might not be possible in the laboratory. The PCI was modeled using GEANT4 [5],

a toolkit for simulating of the passage of radiation through matter. PCI simulations

allowed for advanced analysis into the number of interactions which take place in the

detector elements and the effects the number of interactions might have on perfor-

mance. Also, simulations allow for detailed analysis of energy and position resolution

effects on angular resolution and once validated can allow the user to test performance

gains using different geometries and materials prior to making purchases of expensive

components. With a validated simulation toolkit it then becomes possible to confi-

dently model new detector systems prior to construction. This becomes invaluable

when designing detectors with time and budget constraints.
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4.1 Overview

The PCI [12] was modeled using the GEANT4 simulation toolkit [5]. Doppler broad-

ening effects were modeled using the GEANT4 Low-Energy Compton Scattering

(G4LECS) package [6], an extension to GEANT4 that accurately models atomic

binding effects for low-energy Compton and Rayleigh scattering. When designing a

simulation it is important to include all relevant physical processes so that simulated

data are as close to measured data as possible. The G4LECS package is important

for simulating a Compton imager because it takes into account the fact that electrons

involved in Compton scatter interactions are neither free, nor at rest. This is a funda-

mental lower limit to the angular resolution of the system and must be included in the

simulations. Newer versions of GEANT4 (4.9.1+) come “out-of-the-box” with a sim-

ilar package to G4LECS called Penelope which has only recently been validated [7].

The use of G4LECS in the future will not be necessary. Figure 4.1 shows the virtual

model developed for the PCI using GEANT4.

The model includes all major components of the PCI and any relevant shielding

and housings that could cause scattering. In the simulations (as in the PCI), the active

area of each silicon plane is divided into 320 pixels, each 3 x 3 mm, and the CsI consists

of 42 separate sensors in a 6 x 7 array. The total is therefore 1,002 discrete detector

elements. The output of the simulation is a list of detector elements that were hit

and corresponding energies deposited in each detector element for a given event. Also

included in the simulated output is the exact time of each interaction, the photon

vertex and the number and type of interaction that took place. These are helpful

data in the analysis of any detector system and can shed light into areas that can be

easily improved by hardware or software changes. During analysis, appropriate energy
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Figure 4.1: Virtual model of the PCI used in the GEANT4 simulations.

resolution is added to the data in order to more accurately model the prototype.

4.2 Resolution Smearing

Output data from the GEANT simulations of the PCI contain exact measurements of

energy and position. To validate the simulation, the response of the simulated detector

must be compared with the response of the real detector. Before a comparison can be

made between measured and simulated data, both position and energy resolution must

be added to the simulated data. The ability to add energy resolution to simulated data

provides a powerful tool in the analysis of the detector system. For example, testing

the effects of energy resolution on a detector system is possible by adding more or
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less resolution to the simulated data set. Likewise, position resolution effects can be

quantified by increasing or decreasing the size and number of detector elements.

4.2.1 Position Resolution

Although output interaction locations from the simulations are exact, the PCI is only

capable of determining which detector element was triggered for a given event. As a

result, the exact positions of the simulations must be mapped to the detector element

for which it corresponds. In the PCI, each silicon interaction is changed to reflect the

center of the active pad that it is mapped to. The CsI interactions are changed to

reflect the geometric center in x and y at the most probable interaction depth (z)

of the crystal that it is mapped to. The calculation of the most probable interaction

depth is shown in Eq. 3.2 of section 3.5. It is also useful to maintain a record of the

exact interaction positions to observe the effects of adding position resolution.

4.2.2 Energy Resolution

In order to accurately model the response of any detector, energy resolution consistent

with what is expect should be added to simulated data. For the PCI, the energy

resolution of the silicon detectors is 36 keV (σ) (coincidence mode) and the energy

resolution of the CsI can be described with the function shown in (2.1). For each

simulated event, energy is “smeared” using a Gaussian random number generator [28]

centered at the exact energy with sigma defined by the resolution function in (2.1).

For silicon sigma is assumed to be constant over all energies. Adding resolution makes

the energy spectrum appear as through it were observed in a real detector. It is also

useful to maintain a record of the exact energy to observe the effects of adding energy

resolution. Figure 4.2 shows an example from the PCI simulation of the exact energy

38



www.manaraa.com

spectrum (red) from a simulated 137Cs source, and the spectrum (blue) of the same

data after energy resolution has been added. The photopeak for 137Cs can clearly be

seen as a very sharp peak at 661.59 keV in the exact energy spectrum.

Figure 4.2: Exact energy spectrum of events from a simulated 137Cs source (red) and
the spectrum of the same events after energy resolution was added (blue).

4.3 Hardware Threshold

Another aspect that is critical to the operation of the PCI is the energy threshold. If

the hardware threshold is set too low, more noise will be allowed to trigger the system

and result in poor data quality, if it is set too high some good events will be rejected.

The thresholds on the PCI are set sufficiently high to reduce the amount of noise that

triggers the system while minimizing good data losses. Since the simulation doesn’t

include electronic noise it does not need a hardware threshold, so it must be added

in post-processing. The hardware threshold is simulated using a random Gaussian

function [28]. The function used in the simulated PCI silicon detectors is centered at
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52 keV with a width of 15 keV (σ), based on measured data. The function used in

the simulated PCI CsI detectors is centered at 400 keV with a width of 100 keV (σ)

based on measured data. Figure 4.3 shows simulated 137Cs silicon energy spectrum

before and after the simulated hardware threshold is applied. The simulated hardware

threshold is applied after energy resolution has been added to the data.

Figure 4.3: Demonstration of the simulated hardware threshold in the silicon detec-
tors.

4.4 Simulation Validation

Now that simulated data have the same position and energy resolution as the PCI,

and have a simulated hardware threshold applied, they can be compared to measured

data to see if the GEANT4 model of the detector is accurate. Comparisons will be per-

formed on the silicon and CsI energy deposited and the total energy deposited in the

system for two-interaction event sequences. This is of interest because two-interaction

event sequences are used for imaging. No modeling of the natural background was

performed because the rates are very low, typically 0.1 to 2.0 Hz, depending on the
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threshold settings and the number of disabled channels. Background contributions in

measured data are mostly due to 40K from the concrete in the laboratory and cosmic

radiation.

4.4.1 Silicon Energy

Figure 4.4 shows the comparison of measured and simulated silicon energy deposited

for a 137Cs source after energy resolution and hardware thresholds have been applied.

Measured and simulated data shown in Fig. 4.4 are normalized to the number of

recorded events. The simulated and measured results are in good agreement. There

is a slight difference in the spectra between 170 and 250 keV, which is likely due to

incomplete modeling of objects near the detector, i.e. laboratory surroundings.

Figure 4.4: Comparison of measured and simulated silicon energy after simulated
hardware threshold was applied. These data are normalized to the number of recorded
events
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4.4.2 CsI Energy

Figure 4.5 shows the comparison of measured and simulated CsI energy deposited

for a 137Cs source after energy and position resolution were added and hardware

thresholds were applied. It can be seen from the figure that the comparison is very

good and the physics model used in the simulation is accurate.

Figure 4.5: Comparison of measured and simulated CsI energy after simulated hard-
ware threshold was applied. These data are normalized to the number of recorded
events.

4.4.3 Total Energy

Figure 4.6 shows the comparison of measured and simulated total energy deposited

for a single deposition in the silicon scattering detectors and a single deposition in

the CsI array. This is the data that will be used for Compton image reconstruction.

The high-energy tail on photopeak present in the measured data is from background
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which is not simulated. Background was not simulated because the background count

rate is relatively low. Typical background count rates are 0.1 to 2.0 Hz.

Figure 4.6: Comparison of measured and simulated total energy deposited in the PCI
after simulated hardware threshold was applied. These data are normalized to the
number of recorded events.
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4.4.4 Images

Another important aspect of validating the simulations is to ensure that the simulated

images are realistic and reflective of measured data. Figure 4.7 shows an example

of a back-projected Compton image produced using measured data (left) and the

image produced from simulated data (right). They agree well. Back-projection will

be described in more detail in later chapters.

Figure 4.7: Comparison of back-projected Compton images produced from measured
(left) and simulated (right) data.
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Chapter 5

EVENT RECONSTRUCTION

Reconstruction of a single Compton scatter event requires a minimum of two pairs

of energy and position measurements, one pair at the site of the Compton scatter

interaction and one pair at the absorption location of the scattered gamma ray. With

the recorded energy deposits a scattering angle can be calculated. In the case of the

PCI the incident gamma ray energy is assumed to be the sum of all energy deposits.

The estimated uncertainty in the scattering angle can be obtained using the known

position and energy resolution of the detector system. Both the scattering angle and

the uncertainty in the angle are used during image reconstruction. Additionally if the

position and energy of the recoil electron can be measured, then more information

about the complete event is known and can contribute to the reconstruction, however

this is difficult to achieve.

5.1 Scattering Angle

The Compton formula is given again in (5.1) where θγ is the scattering angle of the

incident gamma ray, E ′e (or E1) is the energy deposited in the Compton scatter, E ′γ

(or E2) is the energy deposited in the absorption and mec
2 is the rest mass energy of
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an electron (0.511 MeV).

cos θγ = 1 +
mec

2

E ′e + E ′γ
− mec

2

E ′γ
(5.1)

Calculation of the scattering angle from the Compton formula requires knowledge

of the incident and scattered gamma ray energies. From the detector, both of these

energies are known. For example: a gamma ray Compton scatters causing the elec-

tron to recoil with energy E1 which is stopped in the scattering detector and deposits

energy E1 in it. The scattered photon then gets absorbed in the absorbing detec-

tor, depositing energy E2. The scattered photon energy is E2 and the total incident

gamma-ray energy is E1 + E2. From the recorded event sequence, the positions of

the scatter and absorption are also known. From these positions the direction of the

scattered gamma ray can be assumed and the source position can be localized to a

point on the surface of a cone. The cone extends out from the scatter position with a

central axis defined by the vector between the two interaction positions. The opening

angle of the cone is described by the scattering angle and the width of the cone is

defined by the uncertainty on the scattering angle.

5.2 Angular Uncertainty

Calculation of the scattering angle alone leads to a thin cone of probability, however

the scattering angle has uncertainty associated with it. By including uncertainty in

the scattering angle during event reconstruction the cone is given width. By including

the width of the cone in reconstruction, the true source distribution can be more accu-

rately described and the imaging algorithms will have a better chance to reconstruct

the data correctly. Angular resolution depends on several factors including Doppler

46



www.manaraa.com

broadening, energy, and position resolution. Doppler broadening represents the lower

limit of angular resolution. Even if the energy and position are known exactly, it is

not possible to know the initial state of the electron in the scattering medium. Energy

and position resolution are known as they are functions of the detector geometry and

materials, Their contributions to the angular uncertainty can be calculated for each

recorded event sequence.

5.2.1 Position Contribution

Each recorded event sequence includes a list of detector elements that were involved.

Since the recorded interaction positions will always have uncertainty associated with

them, the contribution to the angular uncertainty due to position uncertainty can be

calculated using the following equations (5.2-5.4), in Cartesian coordinates, where θ

is the scattering angle, ∆x, ∆y and ∆z are the distances between the two recorded

energy deposits in x, y and z respectively. Wx and Wy are the width and height of the

detector elements. The silicon pixels are 3 x 3 mm and the CsI crystals are 12 x 14

mm. This calculation may be different depending on the detector system used, it is

shown here for the PCI. The silicon detector elements are significantly smaller than

the CsI elements, making the size of the CsI elements the dominant contribution to

the angular uncertainty with respect to position. In the following equations the size

of the silicon pixels is neglected and Wx,y correspond to the dimensions of the CsI

crystals, where Wx=1.4 cm and Wy=1.2 cm.

σ2
θ,position =

∆x2

(∆x2 + ∆y2)(∆z)2
σ2
x +

∆y2

(∆x2 + ∆y2)(∆z)2
σ2
y (5.2)
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σ2
x,y =

∫W/2
−W/2 x

2dx∫W/2
−W/2 dx

=
x3

3
|W/2−W/2

x|W/2−W/2

=
W 2
x,y

12
(5.3)

σ2
θ,position =

∆x2W 2
x + ∆y2W 2

y

12(∆x2 + ∆y2)(∆z)2
(5.4)

5.2.2 Energy Contribution

Due to the fact that no detector material has the ability to perfectly resolve the energy

deposited, there is additional uncertainty in calculated scattering angle due to finite

energy resolution. As with position uncertainty, the energy resolution of the detector

system contributes to the reconstructed event uncertainty. To calculate the energy

contribution to angular uncertainty, a function describing the energy resolution as

a function of deposited energy is needed and can be obtained experimentally. The

energy resolution function for the CsI absorbing array in the PCI is shown in (2.1)

and the uncertainty in the silicon 36 keV (σ) (see section 2.4.1). Equations (5.5-5.11)

show the calculation of the energy resolution contribution to angular uncertainty

given the known uncertainty in the energy measurements (σE1,E2).

x = 1 +
mec

2

E1 + E2

− mec
2

E2

(5.5)

θ = cos−1 x (5.6)

∂x

∂E1

= − mec
2

(E1 + E2)2
(5.7)
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∂x

∂E2

=
mec

2

E2
2

− mec
2

(E1 + E2)2
(5.8)

∂θ

∂x
=

−1√
1− x2

(5.9)

∂θ

∂E1,2

=
∂θ

∂x

∂x

∂E1,2

(5.10)

σθ,energy =

√
(
∂θ

∂E1

σE1)
2 + (

∂θ

∂E2

σE2)
2 (5.11)

5.2.3 Total Angular Uncertainty

The total angular uncertainty (5.12) is the quadrature sum of the position (5.4) and

energy (5.11) contributions. Figure 5.1 illustrates the effect of Doppler broadening

and position and energy uncertainty on the total angular uncertainty of the PCI for

a 137Cs point source. This figure was created with simulated data where the effect

of each contribution was added alone to observe the effect. The angular uncertainty

defines the width of the projected cones during imaging.

σθ,total =
√
σ2
θ,position + σ2

θ,energy (5.12)

5.3 Electron Tracking

Since the silicon detectors in the PCI are relatively thin (270 µm) there is a chance

that the recoil electron will have enough energy to exit the silicon plane. If this occurs

and the electron passes through the air between the planes without stopping or being

49



www.manaraa.com

Figure 5.1: Angular uncertainty of the PCI for a 137Cs point source, showing the
effects of Doppler broadening and position resolution and energy resolution.

scattered out of the system, the electron can be absorbed in the adjacent silicon plane

yielding a second interaction position and another energy deposition. The information

obtained from the recoil electron would allow the source location to be reduced from

a point on the surface of a complete cone to a point on a smaller arc of the same cone.

The momentum vector of the scattered gamma ray can be calculated by multiplying

energy deposited in the CsI by the unit vector pointing from the first interaction

location in the silicon to the absorption location in the CsI. This assumes that the

first interaction happens in one of the silicon planes. The momentum of the recoil

electron would be calculated in a similar way but using the first and second silicon

interactions and the sum of the silicon energies. Since the total momentum of the

system must be conserved, the sum of the scattered gamma ray and recoil electron

momentum vectors will give the incident gamma ray momentum vector. In a perfect
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world the opposite of this vector, starting at the first interaction position, will point

directly at the origin of the gamma ray.

Energy resolution will slightly change the momentum vectors and the calculation

of the scattering angle leading to an incident gamma ray position that is not quite

correct, also the PCI has finite position resolution. Uncertainty in the location of the

energy deposits will alter the calculation of the momentum vectors. Also, the recoil

electron does not always (or even usually) follow a straight path from the time it

is struck by the incident gamma ray to the time it interacts in the adjacent silicon

plane. Electron scattering in the path between interaction points can lead to a large

amount of uncertainty. Finally, the Compton formula assumes the electron is at rest

when the interaction occurs, which it is not. The initial momentum of the electron

will alter the kinematics. Since there is no way to know the original momentum of the

electron, it cannot be corrected for and the calculated momentum vectors will always

have some uncertainty. Once the recoil electron momentum vector is calculated, all

that is needed is the azimuthal angle of the vector pointing in that direction. The

azimuthal angle of the incident gamma ray along the cone described by the Compton

formula can then be calculated as the difference between the azimuthal angles of the

scattered gamma and the recoil electron. Some uncertainty must be added to this

angle, which results in a section of a cone rather than a complete cone. The size of

the section of a cone will be energy dependent.

Studies have shown that while possible, electron tracking is not efficient enough

with the PCI to be useful. In order for it to become useful the relative efficiency

would have to increase by enlarging the size of the CsI array to allow for more solid

angle coverage of the scattered gamma rays and possibly larger silicon active areas
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so that more of the escaped recoil electrons could be captured. Also, the thickness of

the silicon layers, while small, is not sufficiently small for the recoil electron to escape

with a usable probability. Thinner silicon detectors would improve this but would

lower the overall efficiency of the system. The hardware thresholds for the silicon and

CsI also play a role in the efficiency. Because most of the interactions in the silicon

occur at energies well below the current threshold of the system, many, if not most,

of the events are being discarded. While this method can reduce the size of the conic

section required to reproduce a source distribution, a reduction of 10 to 15 % is not

significant, especially when a portion of the cone, likely the section including the

reduction, is outside of the field of view of the imaging space. In summary, electron

tracking does not help in the image reconstruction for the PCI.
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Chapter 6

IMAGING ALGORITHMS

Sufficient information to reconstruct the event cone of a single incident gamma ray

can be deduced from a minimum of two position and energy measurements. The next

step in the process of Compton imaging is to generate an image based on information

collected from many measured gamma rays. The measured distribution of a source

will be the intersection of many Compton event cones. Imaging is heavily dependent

on two factors: fidelity of the measured data and the qualities of the algorithm em-

ployed. Since the fidelity of the data is fixed for a given detector and increased fidelity

translates to higher cost, improvements in the algorithms and how they are able to

reconstruct the data is of great importance.

There are several methods that yield Compton images. First is back-projection

whereby each event cone is projected onto an imaging plane or into an imaging volume.

A second method for image reconstruction involves algorithms that perform succes-

sive iterations on the back-projected image in order to converge to the most likely

source distribution that would have produced the measured data. Both weighted back-

projection and maximum likelihood (ML) methods will be discussed in this chapter

as well as a method for determining the source-to-detector distance in the near-field
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for static (stationary detector) data.

6.1 Geometric Back-projection

Back-projection may be performed in several ways, however in this work a geometric

method will be presented because it is fast and accurate. Back-projection involves

the reconstruction of a single Compton event sequence onto an imaging plane (2D)

or into an imaging volume (3D). The combination of many back-projected event

sequences results in the formation of an image. In the geometric back-projection

method the definition of the dot product will be used to solve for the intersection

points of the event cone and the image pixel or voxel. Begin by supposing that a

photon scatters in the detector at point P1 (x1, y1, z1) and photo-absorbs in the

detector at point P2 (x2, y2, z2). Using event reconstruction, the estimated scattering

angle θ and the uncertainty in the scattering angle σθ can be calculated (Chapter

5 - Event Reconstruction) . The event can then be represented as a cone projected

into space from P1 with its central axis defined by the vector pointing from P2 to

P1 (~V21) and opening angle described by θ with a width corresponding to σθ. Let ~r

represent the vector pointing from P1 along the cone axis to the imaging plane and

let ~R represent the vector pointing from P1 to the intersection point of the event cone

and the imaging plane. Figure 6.1 shows the back-projection of a single Compton

event sequence.

In order to define ~r (x0, y0, z0), the intersection point of the cone axis and the

imaging plane must be calculated. Note that the positions of x0, y0 and z0 represent

the center of the image pixel. Larger pixel sizes will decrease the resolution of the

image but also decrease reconstruction time. The calculation of ~r is shown in equations
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Figure 6.1: Back-projection of a single event sequence.

(6.1 - 6.3) where all coordinates used are shown in Fig. 6.1.

z0 − z1 = ∆z (6.1)

x0 − x1 =
x1 − x2

z1 − z2

∆z (6.2)

y0 − y1 =
y1 − y2

z1 − z2

∆z (6.3)

The back-projection method described here uses the definition of a dot product

(6.4) to solve for the intersection of the reconstructed Compton cone and a point in

space. Squaring and transposing (6.4) yields (6.5) where the unknown variables of the

intersection points (x, y, z) for a given event sequence can be obtained by finding the

roots.

~r · ~R = |~r||~R| cos θ (6.4)
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(~r · ~R)2 − r2R2 cos2 θ = 0 (6.5)

Note from Fig. 6.1 that z0 = z = zimage. If z is selected as the imaging plane

and y is known by selecting a row in the image, then x is the only unknown in the

equation. By turning (6.5) into a second order polynomial function of x (6.6), then x

can be solved using the quadratic formula (6.7). The coefficients of x are given in(6.8

- 6.10). If the discriminant of (6.7) (b2− 4ac) is less than zero it means the cone does

not intersect the imaging plane for the selected values of y and z.

ax2 + bx+ c = 0 (6.6)

x =
−b±

√
b2 − 4ac

2a
(6.7)

a = x2
0 − r2 cos2 θ (6.8)

b = 2(x0y0y + x0z
2) (6.9)

c = y2
0y

2 + 2y0yz
2 + z4 − r2(y2 + z2) cos2 θ (6.10)

For any given value of y at a specific z the outside and inside edges of the cone (in

x) can be calculated using σθ and θ. Pixels between the edges of the cone are filled

with weighted values. The result is an event circle scribed onto the imaging plane

properly weighted with a width consistent with the limits of the detector.
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6.1.1 Cone Weighting

The intersection pixels j of the cone for event i are weighted based on several factors

including the width, circumference and the slant of the cone. Weighting the cones is

a way to accurately model the information recorded within the event and serves to

smooth the images.

In order to account for the width of the cone wall for event i, each pixel j inter-

sected by the cone is weighted according to a Gaussian centered at θi with a width

of σθi
. The formula is shown in (6.11) where θi is the computed Compton scatter-

ing angle for event i and θj is what the scattering angle would be if the gamma ray

originated from pixel j.

Wij,width = exp [−(
θi − θj

2σθ
)2] (6.11)

The weight for the circumference of the event circle Wij,circ, is obtained by dividing

the weight by θi. This comes from the fact that larger scattering angles result in greater

cone circumferences. The weight due to the slant of the cone Wij,slant, is accounted for

by multiplying by cos3 θ~R where θ~R is the polar angle of ~R. One power of the cosine

term comes from the slant angle of the image area with respect to the event cone and

two powers come from the inverse square law.

The total weight Wij of each pixel in the reconstructed event cone is given by the

product of all the weights for that pixel (6.12).

Wij = (Wij,width)(Wij,circ)(Wij,slant) (6.12)

Figure 6.2 shows a single event cone projected onto an imaging plane and a three-
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dimensional view of the same cone to show the weighting of the cone. In the three-

dimensional view the weighting due to the cone width and slant are clearly visible.

Figure 6.2: A single event cone projected onto the imaging plane (left) and a three-
dimensional view of the same cone to show the slant weighting (right).

6.1.2 Image Reconstruction

Back-projection of many cones forms an image, properly weighted on an event-by-

event basis. Figure 6.3 shows the sum of 9,876 cones projected onto the same imaging

area for a measured, 10 µCi, 137Cs source located at (0.0, -5.0, 9.0) cm where (0.0,

0.0, 0.0) is centered on the silicon detectors along the front face of the bellows.

The image shown in Fig. 6.3 was projected onto a 2D plane at a known z location.

The image shown in Fig. 6.3 is of a simple point-like source and it appears that back-

projection alone is sufficient to locate the source in x and y. When imaging in the

field, the actual imaging distance z may not be known beforehand, therefore a method

for determining the depth of the source is presented in section 6.3.

Fig 6.4 shows the image produced via back-projection for an extended source

distribution. The source was an “L” shaped source [29] where the length of the long
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Figure 6.3: Image produced from the sum of 9,876 projected event sequences from a
measured 10 µCi, 137Cs source.

(vertical) axis of the “L” was 12.7 cm, the length of the short (horizontal) axis was

5.0 cm, and the width of both the long and short axes was 1.3 cm.

In this case back-projection fails to give any information about the source other

than its presence. If the source is not point-like in nature, then the back-projection

algorithm has difficulty providing any information about the true distribution of the

source. In the event that knowing the shape of the source is necessary, more advanced

imaging algorithms must be used. List-mode maximum likelihood expectation max-

imization (LM-MLEM) is one such algorithm. It has the ability to refine the image

produced via back-projection such that more information can be extracted.

6.2 List-Mode Maximum Likelihood Expectation

Maximization

Using a minimum of two position and energy measurements the distribution of a

source can be reconstructed using many event sequences via the back-projection

method. This method works reasonably well for localizing point-like sources, how-
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Figure 6.4: Back-projected image of an extended source distribution from the sum of
79,173 event sequences.

ever in the case of a weak source in the presence of a large background or the case of

a distributed source, the back-projection algorithm will likely fail to provide adequate

deconvolution. List-Mode Maximum Likelihood Expectation Maximization (MLEM)

is an iterative statistical algorithm that provides the necessary deconvolution of mea-

sured Compton data to resolve distributed sources. MLEM works by attempting to

reconstruct the most likely source distribution by finding successive approximations

starting from a list of measured events and positions, and a calculation of the ex-

pected detector response (system model). List-mode infers that the data being fed

to the algorithm is simply a list of Ni energy depositions and interaction points i.e.

i0 = {E1, x1, y1, z1, E2, x2, y2, z2}. From this list, the events can be back-projected in

order to obtain a forward model of the data.
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6.2.1 Forward Model

Before MLEM iterations can be performed on a data set, the forward model must be

calculated using information obtained from back-projection. During back-projection,

events are processed, one at a time, into an image. Some of the information obtained

in this step needs to be saved in order to be used later by the MLEM algorithm. For

each pixel j in the image, the events i with a cone that touched that pixel must be

remembered. In addition, for each event i, a list of pixels j in the image that were

crossed by that event’s cone must be remembered. For example, say the image has

Nj = 100 pixels, and there are Ni = 1000 measured event sequences. For each of the

Nj pixels there would be a list of ni events that touched it, and for each of the Ni

events there would be a list of nj pixels that it touched. These values constitute the

forward model.

Once the forward model has been established, iterations begin working backwards,

using an update equation, until the data converges upon the most likely source dis-

tribution, given the measured data. Since Compton data is inherently noisy, the iter-

ations cannot be allowed to run free until convergence because this will create many

artifacts (noise) in the image. Therefore iterations are halted when the variance be-

tween the image pixels does not change by more than a predefined threshold.

6.2.2 Update Equation

The update equation for the MLEM algorithm is given in (6.13) [30] where xnj is the

amplitude of pixel j in the image after n iterations and sj is the sensitivity of pixel j

(from the system model). The main summation is over i(∩j) or the subset of events

i that have a cone that touches pixel j and tij is the probability of event i being

61



www.manaraa.com

observed in image pixel j. The second sum is over k(∩i) or the subset of pixels k

that were touched by the cone of event i and tik is the probability of event i being

observed in pixel k.

xn+1
j =

xnj
sj

∑
i(∩j)

tij∑
k(∩i) tikx

n
k

(6.13)

The pixel/event weights (tij) are calculated as defined in (6.14) where dσc/dΩ is

the Klein-Nishina differential scattering cross-section [20], R12 is the distance between

the scatter and absorption locations, θ12 is the polar angle of the vector between the

scatter and absorption locations, z2 is the thickness of absorber material as seen

from the scatter location and λt is the total interaction cross-section evaluated at the

scattered energy.

tij =
dσc
dΩ
× 1− exp (−z2/λt)

R2
12 cos θ12

(6.14)

6.2.3 System Model

The system model used in the MLEM algorithm is dependent on the detector and

not the algorithm. If the MLEM algorithm is going to be applied to a particular

detector system then the system model, or sensitivity function, must be calculated or

estimated. Presented here is an analytical method for computing the system model

[31].

The system model, or sensitivity, of pixel j (sj) is calculated analytically before

imaging. It is the sum of the probabilities that a single event originating from image

pixel j will be detected anywhere in the system. The system model is a function

of three position variables (of the source location) and should cover the anticipated
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imaging range in x, y, and z.

For each pixel j, the sum of interaction probabilities for each scatter/absorber

detector combination must be calculated in order to form the system model. P0 is

defined as the probability that a gamma ray will survive the distance from image

pixel j to the scattering location (Rj,1). P1 is defined as the probability that a gamma

ray will Compton scatter in the thickness of material (∆Zscatter) as seen from image

pixel j. Next, for each possible absorption position, multiplied by the probability P2

of a gamma ray surviving the distance from the scatter location to the absorption

location (R1,2), by the probability P3 that the gamma ray would have scattered in

the direction of the absorber element, based on the Klein-Nishina formula [20] and

by the probability P4 that a gamma ray would interact in the thickness of material

as seen from the scatter location to the absorption location (∆Zabsorber). The formula

for the calculation of the system model is shown in (6.15-6.20).

P0 = exp (−Rj,scatter/Λair) (6.15)

P1 = 1− exp (−∆Zscatter/Λscatter) (6.16)

P2 = exp (−R12/Λair) (6.17)

P3 =
dσc
dΩ

cos θ12

R2
12

(6.18)

P4 = 1− exp (−∆Zabsorber/Λabsorber) (6.19)
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sj =
∑

scatter

(P0 × P1 ×
∑

absorber

(P2 × P3 × P4)) (6.20)

Since only the shape of the function is important, not the overall normalization,

all constants are omitted from the calculation. In some cases it may be possible to

use a function to approximate the system model. This will save computation time

and yield similar results, however a complete calculation should still be performed in

order to validate the shape of the function.

Figure 6.5 shows a sample section of the calculated system model for a slice at

z = 10.0 cm. At any fixed value of z the maximum value for the sensitivity function

is at x=0, y=0.

Figure 6.5: Analytically calculated system model at z = 10.0 cm. Vertical axis (sj)
gives the normalized probability of detection. The probability of detection is largest
(1.0) at x=0.0, y=0.0.

Since the method presented here may not be appropriate for all detector systems,
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Table 6.1: Comparison of the system model for the analytical, Monte Carlo and
functional methods, for the PCI at z=10.0 cm. The model is normalized to 1 at (0.0,
0.0)

Position Analytical Monte Carlo Approximation
(cm, cm) (cos1.75 θ)

(0.0, 0.0) 1.00 1.00 1.00
(7.5, 0.0) 0.68 0.73 0.68
(15.0, 0.0) 0.34 0.40 0.36
(7.5, 7.5) 0.52 0.63 0.52

(15.0, 15.0) 0.21 0.25 0.23

one other method for the calculation of the system model is using Monte-Carlo meth-

ods where the system model is estimated for many pixels in the image space and then

interpolated to form the complete model. A comparison of the analytical solution for

the PCI and the Monte-Carlo solution is shown in Table (6.1) as well as a functional

approximation.

6.2.4 Source Reconstruction

Extended source imaging was performed with the PCI and an “L” shaped source [29].

The length of the long (vertical) axis of the “L” was 12.7 cm, the length of the short

(horizontal) axis was 5.0 cm, and the width of both the long and short axes was 1.3

cm. The source activity was 3616 kBq and it was located at z = 10.0± 0.3 cm. The

data set contained 275,987 recorded event sequences accumulated over approximately

96 hours.

Figure 6.6A shows the “L” source data reconstructed via back-projection with the

actual source position shown with a black line, this is the same image that was shown

in Fig. 6.4. It is clear from 6.6A that back-projection is not able to resolve this source.

The same “L” source data reconstructed using the MLEM algorithm after 2, 10 and
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40 iterations is shown in Figs. 6.6B-D respectively. The shape of the source starts to

become apparent after only 10 iterations of the MLEM algorithm.

Figure 6.6: Back-projected reconstruction of 137Cs “L” source (A) and MLEM recon-
struction after 2, 10 and 40 iterations (B, C, D).

From Fig. 6.6 it can be seen that MLEM is a powerful tool in the deconvolution

of Compton scatter data. It is able to improve the fidelity of reconstructed images

without changing the measured data.

6.3 Source-to-Detector Distance

So far, images are produced by setting the source-to-detector distance to the known

source distance. A method for calculating the source-to-detector distance itself was

not investigated. In many applications it is not only necessary to localize a source in a

closed volume, with respect to the detector in two dimensions, the source-to-detector

distance must also be known. An algorithm is presented here, developed by M.W.

Rawool-Sullivan et al. [32] for estimating the source-to-detector distance for a point

source in a Cartesian coordinate system using only back-projection algorithms. The

x and y coordinates of the source can be obtained using the back-projected image

and a two-dimensional peak finding algorithm.

The method presented uses the solid angle subtended by the reconstructed images

at various source-to-detector distances. The basis for the method lies in the fact that
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reconstructed images (in the near field) are of better quality for the ‘real’ z distance.

This is demonstrated in Fig. 6.7 which shows reconstructed images for a point source

a various distances. The actual source location was at z=70 mm.

Figure 6.7: Reconstructed images of a source at x = 10 mm, y = 38 mm, z = 70 mm.
The image was reconstructed at various source-to-detector distances, z = 30 mm (A),
70 mm (B) and 100 mm (C).

The reconstructed image at the correct source-to-detector distance z = 70 mm

(Fig. 6.7B) is better (i.e. the size of the image is smaller) than for other distances.

In addition, when imaging at the incorrect source-to-detector distance, the x and y

positions of the source are usually incorrect, with the exception of a located source

at (0, 0).

The solid angle subtended by an image is calculated by summing the area of

each pixel in the image (Ai) above a certain threshold value, divided by 4π times

the distance from the center of the image pixel to the average scattering location

of the data set, squared. Equation 6.21 shows the calculation of the solid angle for

all pixels above threshold where ∆Z represents the distance between the Compton

scatter z (averaged over all interactions) and the center of the imaging pixel and

R2 = (∆X)2 + (∆Y )2 + (∆Z)2 where ∆X and ∆Y are the distance between the

Compton scatter and the imaging pixel for the x and y dimensions respectively. This
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expression assumes Ai � R2
i , which is a good approximation in this case.

Ω =
∑
i

Ai
4πR2

i

(6.21)

The threshold is defined as the fraction of the maximum single pixel amplitude

(MSPA) in the image. For example, a threshold of 0.5 means that all of the pixels

whose amplitude is greater than 0.5 times the MSPA in the image will be included in

the solid angle calculation. The solid angle subtended by each of the reconstructed im-

ages is then plotted against the corresponding source-to-detector distance. As shown

in Fig. 6.8, the minimum solid angle subtended (in steradians) corresponds to the

correct source-to-detector distance.

Figure 6.8: Solid angle subtended by the reconstructed image vs. the source-to-
detector distance for measured data. The fit to the minimum is shown with a solid
line and the threshold was 0.5 MSPA.

An analytic estimate of the solid angle covered by an image with a finite size as

a function of Zdet results in an expression which depends on Zdet as shown in (6.22).

Rather than using the exact geometric factors, which give P0, P1 and P2 in (6.22),
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they are used as parameters in a fit to the data as shown in Fig. 6.8. Taking the first

derivative of (6.22) the minimum can be found as shown in (6.23). Propagating the

uncertainties on the fit parameters (σ1, σ2) through (6.23) gives an estimate on the

uncertainty in Zmin as shown in (6.24). Here Zdet is the distance between the average

z location of the Compton scattering interactions (dZ) and the source position (z).

Ω = P0 + P1/Zdet + P2/Z
2
det (6.22)

Zmin = (−2P2/P1)− dZ (6.23)

σmin = Zmin
√

(σ1/P1)2 + (σ2/P2)2 (6.24)

It should be noted that the accuracy of the estimated source-to-detector distance

depends on several factors: the statistical uncertainty in the numbers of reconstructed

events, peak threshold, pixel size and finite position and energy resolution of the de-

tector system. The effects of angular uncertainty due to energy and position resolution

were discussed previously in section 5.2. Out of the remaining parameters, the largest

effect comes from limited statistical precision of the image. There are two types of

statistical effects. First, statistical uncertainty in the number of reconstructed events,

and second the peak threshold which limits the number of pixels used in the calcula-

tion. Considering the number of events in the image it is important that any energy

windowing of the data (around a photopeak of interest) be made large enough to

include all relevant source events while minimizing background and Compton contin-

uum events.
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As for peak threshold, a plot of the difference ∆z between the actual and the

calculated (z) vs. peak threshold is shown in Fig. 6.9. For this particular data set,

Zmin estimates are relatively stable between threshold values of 0.3 and 0.5 MSPA.

In order to better estimate the source-to-detector distance an average is taken over

all thresholds between 0.3 and 0.5 MSPA. Because the statistical uncertainties on

the points being averaged are correlated, the estimated statistical uncertainty on the

average is the average of the error bars of all the points. For the data in Fig. 6.9 the

average fit minimum produced an estimated Zmin of 70.6 ± 5.4 mm. The actual z in

this case was 70 ± 3 mm.

Figure 6.9: The difference between the calculated source z and the actual z position
vs. peak threshold. The average Zmin was estimated to be 70.6 ± 5.4 mm with a fit
between 0.3 and 0.5 MSPA.

Multiple data sets have been analyzed using the technique described here. Results

of these experiments are summarized in Table 6.2 and show that this is a simple and

effective method for determination of the source-to-detector distance in the near-field.

It has been mentioned several times that this method works in the near-field. If
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Table 6.2: Energy and average Zmin for three measured data sets.
Source Incident Energy Zmin Actual z Actual x, y

[keV] [mm] [mm] [mm]
60Co 1173, 1333 75.9 ± 3.1 80 ± 3 0, -30
54Mn 834 61.8 ± 6.5 70 ± 3 10, 38
137Cs 662 103.2 ± 16.2 100 ± 3 0, -60

source-to-detector distance calculations are needed at much further distances (com-

pared to the transverse size of the detector system) then the imager would have to be

mobile in order to give estimates of the source location from many different positions

or there would need to be at least two detectors in the field of view of the source with

a large separation between them. In the case of astrophysics, where the source is very

far away, imaging is performed in angular space and z is assumed to be infinite.
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Chapter 7

IMAGING PERFORMANCE

In this section performance of the imaging algorithms developed in this thesis will be

demonstrated for a variety of cases including two dimensional imaging of single and

multiple point sources and extended source distributions. Two dimensional imaging

of point-like sources is perhaps the easiest case for a Compton imager.

7.1 Single Point Source

A single point-like source is the easiest case for Compton imaging. The back-projection

algorithm alone should be able to provide the source location in x and y for a given

z. The MLEM algorithm may still be applied in this case as a way of increasing the

signal to noise and refining the source location. Figure 7.1 shows the reconstructed

image of a 137Cs source located (0.0, -6.0, 10.0) cm from the detector origin. This

image was reconstructed with the back-projection method described in section 6.1

using 5146 measured event sequences between 600 and 720 keV.

By fitting the image in Fig. 7.1, an estimate of the source location can be found.

For this image the source was located at (0.0, -6.1) ± (2.3, 1.8) cm in x and y, where

z is fixed at the imaging distance (z=10.0 cm). The uncertainty in the measured
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location comes from the two dimensional Gaussian fit function used.

From the image shown in Fig. 7.1 it can be seen that the back-projection algorithm

is sufficient to resolve the image, however applying the MLEM algorithm will serve to

further reduce measured position uncertainty in the image location and improve the

signal to noise in the image. Figure 7.2 shows the reconstructed image of a 137Cs source

located (0.0, -6.0, 10.0) cm from the detector center. This image was reconstructed

using 10 iterations of the MLEM method described in section 6.2 using 5146 measured

event sequences between 600 and 720 keV. The measured location of the source is

now at (0.0, -5.7) ± (0.9, 0.7) cm in x and y. This shows better than a 50% decrease

in the uncertainty of the measured source location.

The angular resolution measurement or ARM distribution of the PCI can be

calculated by taking the difference between the scattering angle determined by the

energy deposited and the angle between the vector defined by the two measured

interaction locations and the vector between the source location and the scattering

interaction. The ARM distribution for this source is shown in Fig. 7.3 where the

calculated angular resolution is 0.156 radians or 8.94 degrees FWHM, determined

using a double Gaussian fit function. The tails of the ARM distribution are the result

of incomplete collection of energy in the PCI and incorrect sequencing of events.

These examples show that imaging of a single point source using both the back-

projection and MLEM methods is possible and demonstrates excellent source local-

ization and angular resolution. Since the angular resolution of the PCI is a function

of the detector element sizes (silicon and CsI) and the distance between the scatter

and absorption planes, the ARM could be improved further by increasing the distance

between the silicon and CsI, at a cost of reducing the overall efficiency of the system.
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7.2 Multiple Point Sources

It has been shown that simple back-projection works well for a single point source in

the image field of view (FOV). When multiple sources are in the FOV simultaneously

the back-projection cones of each source can contribute to the background of the

other sources. Also, if two or more sources are close together the ability to resolve

each source individually becomes difficult.

Figure 7.4 (left) shows the back-projected image formed from two measured sources

in the FOV separated by 8.9 cm. The first source is 137Cs and was located at (0.0,

-5.0) cm. The second source was 54Mn and was located at (1.0, 3.8) cm. Both sources

were 7.0 cm from the front of the detector. The two sources are far enough apart that

back-projection is able to resolve both sources separately. The imaging algorithm re-

ported the positions of the cesium and manganese sources at (0.1, -4.4) ± (0.5, 0.5)

and (1.2, 3.4) ± (0.8, 0.9) cm respectively.

As the distance between multiple sources decreases, the ability of the back-projection

algorithm to resolve each source is degraded. Figure 7.5 (left) shows two simulated

600 keV point sources separated by 10.0 cm. The back-projection algorithm smears

the positions such that they appear to be either two separate sources or a single elon-

gated source. Figure 7.5 (right) shows the same data set after applying 30 iterations

of the MLEM algorithm. MLEM in this case was able to provide the deconvolution

necessary to remove any ambiguity about the true source distribution.

If the two sources are moved closer, the back-projection algorithm is unable to

distinguish between them, however it does at least give an indication that a source

might be present. Figure 7.6 (left) shows the back-projected image of two simulated

600 keV point sources located at (-2.0, 0.0) and (2.0, 0.0) cm. In the back-projected
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image the sources appear as a single elongated blob along the y-axis. Figure 7.6

also shows the same two sources (right) after applying 30 iterations of the MLEM

algorithm. In this case it becomes clear that two distinct sources are present.

In the event of many sources close together in the same FOV, the back-projection

algorithm fails to provide any information about the true source distribution. For

example, Fig. 7.7 (left) shows the back-projected image of four simulated 400 keV

point sources located at (-3, 0), (3, 0), (0, 3) and (0, -3) cm, all at Z=10.0 cm. By

applying 200 iterations of the MLEM algorithm it becomes clear that four separate

sources are in the FOV at the described positions as shown in Fig. 7.7 (right). The

located source positions for the four sources are shown in Table 7.1.

Table 7.1: Located positions and uncertainties of the four simulated sources shown in
Fig. 7.7 after 200 iterations of the MLEM algorithm.

Simulated Source Position Located Source Position
(cm) (cm)

(-3.0, 0.0) (-2.7, 0.0) ± (0.4, 0.4)
(3.0, 0.0) (3.0, 0.0) ± (0.4, 0.4)
(0.0, 3.0) (0.0, 3.0) ± (0.4, 0.4)
(0.0, -3.0) (0.0, -2.7) ± (0.4, 0.4)

7.3 Extended Sources

Because of the way Compton events are projected there are many pixels in the image

that get filled which are not part of the source. During imaging of an extended source

distribution the back-projected image becomes convolved with background from true

events. This makes it difficult, if not impossible, to determine source location and

shape. In this case it becomes clear that a more elaborate algorithm such as MLEM

is needed. Extended source imaging with the PCI was performed using two different
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source distributions, an “L” shaped source and a ring shaped source. The results of

extended source imaging using the PCI were published in [31]

7.3.1 137Cs “L” Shaped Source

The length of the long (vertical) axis of the “L” was 12.7 cm, the length of the short

(horizontal) axis was 5.0 cm and the width of both long and short axes was 1.3 cm.

The source activity at the time of measurement was 3616 kBq. The “L” source was

located at z = 10.0 ± 0.3 cm. There were 275,987 recorded event sequences, which

took a little over 4 days to collect. Of the events that satisfied the hardware trigger

condition, only 69,627 were used in the image after energy windowing. Figure 7.8A

shows the back-projection reconstruction of the “L” shaped source. It is clear that

back-projection alone is not adequate for extended source imaging. Figures 7.8 B and

C were reconstructed using the MLEM method. The lines in 7.8C show the actual

“L” source source and location.

Figure 7.9 demonstrates the progress of MLEM iterations for the data shown in

Fig. 7.8B. Image quality gets better as the number of iterations increases. Iterating

past the point of convergence does not improve image quality. For this measured data

set, processing was halted after 30 iterations.

Figure 7.10 shows the images that result when a subset of the events used to create

the image in 7.9D are used. The four cases shown use 2000, 5000, 10,000 and 69,627

imageable events (after energy windowing). The image becomes better defined as the

number of events used increased. It is clear that 2000 events are insufficient and the

5000 events gives only a hint at the true shape. The true shape starts to become clear

after 10,000 events and is quite clear after 69,627 events.
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7.3.2 54Mn Ring Source

A ring shaped source was fabricated using a point source and a propeller attached to

a motor which rotated at 1 rpm. The shaft of the motor was parallel to the z axis.

The point source was attached to one end of the propeller and therefore, averaged

over time, produced a ring shaped source with the ring contained in a plane parallel

to the xy imaging plane.

The propeller swept out a circle with radius 5.5 ± 0.2 cm. This approximated

a radioactive ring source. The ring source was at z = 11 cm. MLEM iterations of

measured and simulated ring source data are shown in Figs. 7.11 and 7.12 respectively.

Using the MLEM algorithm, the measured and simulated reconstructed images are

similar and in both cases the ring-shaped image is reconstructed well. The width of

the ring in the reconstructed image is approximately 3.4 cm FWHM. The diameter of

the source itself is 0.5 mm – which is small compared to the width of the reconstructed

ring. This width is due to the finite resolution of the PCI imager. Figure 7.12 compares

an image from the reconstruction of simulated events. Figure 7.12A shows the ring

image which would result if the PCI had perfect energy and position resolution.

Figures 7.12B and 7.12C are similar to the results of the real data shown in 7.11.
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Figure 7.1: The reconstructed image of a 137Cs source located (0.0, -6.0, 10.0) cm from
the detector center. This image was reconstructed with the back-projection method
described in section 6.1 using 5146 measured event sequences between 600 and 720
keV.
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Figure 7.2: The reconstructed image of a 137Cs source located (0.0, -6.0, 10.0) cm from
the detector center. This image was reconstructed using 10 iterations of the MLEM
method described in section 6.2 using 5146 measured event sequences between 600
and 720 keV.
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Figure 7.3: Calculated ARM for a 137Cs source at (0.0, -6.0, 10.0) cm. The angular
resolution is 0.156 radians or 8.94 degrees FHWM.
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Figure 7.4: Back-projected image of two measured point sources (left) and the same
two sources after 30 iterations of the MLEM algorithm (right). The first source is
137Cs located at (0.0, -5.0) cm and the second source was 54Mn, located at (1.0, 3.8)
cm. Both sources were 7.0 cm from the front of the detector.

Figure 7.5: Back-projected image of two simulated 600 keV point sources located at
(-5.0, 0.0) and (5.0, 0.0) cm (left). The imaging distance for both source was at Z=8.0
cm. The same two sources after 30 iterations of the MLEM algorithm are shown on
the right.
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Figure 7.6: Back-projected image of two simulated 600 keV point sources located at
(-2, 0), (2, 0) cm (left). The imaging distance for both source was at Z=8.0 cm. The
same two sources after 30 iterations of the MLEM algorithm are shown on the right.

Figure 7.7: Back-projected image of four simulated 400 keV point sources located at
(-3, 0), (3, 0), (0, 3) and (0, -3) cm, all at Z=10.0 cm (left). The same four sources
after 200 iterations of the MLEM algorithm are shown on the right.
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Figure 7.8: A back-projected reconstruction of 137Cs “L” source using 69,627 image-
able events (A), a MLEM reconstruction of the same source after 30 iterations (B),
and the same MLEM image showing the actual source position (C). The differences
between (B) and (C) reflect two methods of displaying the same image. (B) shows
contours and (C) shows pixel intensity.

Figure 7.9: The progression of MLEM iterations for an “L shaped 137Cs source. The
image after 1 (A), 5 (B), 15 (C), and 30 (D) iterations are shown. These images were
generated from measured PCI data.

Figure 7.10: Shows the change in the “L-source image as the number of imageable
events used is increased from 2000 (A), to 5000 (B), to 10,000 (C), to 69,627 (D).
These images were generated from measured PCI data after 30 iterations of MLEM.
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Figure 7.11: Reconstruction of the measured 54Mn ring source data: (A) shows the
back-projection image, (B) shows the image after four iterations of MLEM, and (C)
shows the image from (B) in a 3D plot. The circle drawn on (B) shows the actual
location of the ring source. The center of the circle was at X = -1 cm and Y =
0 cm. The uncertainties on our X, Y and Z measurements in the laboratory were
approximately 0.3 cm. The circle drawn has a radius of 5.5 cm. This image consists
of 3014 imageable events after energy cuts (790 keV < E < 910 keV). The data set
took two days and 4 h to collect

Figure 7.12: Simulated 54Mn ring source before (A) and after (B) energy and position
resolution were added. (C) Shows a 3D representation of the ring source with resolu-
tion added. Images shown are after four iterations of MLEM. The simulated images
use 54,214 imageable events after energy cuts.
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Chapter 8

FUTURE WORK

Continuation of this work will follow several paths. First, the algorithms will continue

to be developed to provide greater deconvolution at faster processing speeds. The

maximum likelihood algorithm will be developed to include full 3D reconstruction of

both single and multiple point and extended source distributions. Also, the Compton

algorithms and simulation toolkit will be used for future detector development of

detection projects such as the Domestic Nuclear Detection Office’s (DNDO) Stand-

off Radiation Detection System (SORDS) project.

8.1 Three Dimensional Maximum Likelihood

It has been shown that MLEM is an excellent technique that can be applied to Comp-

ton imaging. Traditional MLEM is performed in a two dimensional imaging plane,

which still requires the knowledge of the source-to-detector distance. It is possible to

use the power of the MLEM algorithm to iterate over all three spatial dimensions [34].

Event reconstruction in three dimensions is slightly different than two dimen-

sions. Rather than calculating the intersection of a cone and a plane in space at a

fixed source-to-detector distance, events must be projected into an imaging volume as
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shown in Fig. 8.1. As in two dimensions the three-dimensional MLEM algorithm will

converge on the most probable source distribution. The time required for convergence

is heavily dependent on the number of calculations performed per iteration.

Figure 8.1: Three-dimensional back-projection from Z=-0.5 cm to Z=10.5 cm (left)
and two-dimensional back-projection at Z=7.0 cm (right). For both cases X and Y
were from -5.5 cm to 5.5 cm. All distances are in centimeters.

In many imaging scenarios the ability to localize a point source in space is crutial

and represents the easiest possible case for three-dimensional reconstruction. The

next, and somewhat more complex, case of multiple sources may also arise. Here, the

ability to distinguish multiple sources from one another becomes important. Sources

may also be distributed in x, y or z, further complicating source identification. An

algorithm that is capable of handling all of these scenarios is most desirable, and

3DMLEM is one potential path towards this goal. The following three figures show

examples of the three cases described. Figure 8.2 shows the 3DMLEM reconstruction

of a single 137Cs source measured with the PCI. Figure 8.3 shows both 2 and 5

sources correctly reconstructed from simulated PCI data, and Fig. 8.4 shows a 400

keV simulated line source reconstructed in full 3D.
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Figure 8.2: Measured data taken with the PCI. 137Cs source located at (1.0, 3.8, 7.0)
cm ± 3 mm in any direction. The reconstructed source voxel was located at (1.0, 4.0,
6.0) cm. All distances are in centimeters.

The 3DMLEM method of imaging has been demonstrated in three cases using

both measured and simulated data from the PCI. The algorithm currently applies to

single point sources, multiple point sources and distributed sources. With more work

the flexibility of this algorithm can be improved and demonstrated in a wider range

of scenarios.
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Figure 8.3: Two simulated 137Cs sources after 50 iterations of 3DMLEM (A). Sources
are located and reconstructed at (-1.0, 0.0, 5.0) cm and (1.0, 0.0, 5.0) cm. Five (5)
simulated 137Cs point sources after 50 iterations of 3DMLEM (B). Sources are located
at (0.0, 0.0, 5.0) cm, (3.0, 0.0, 5.0) cm, (0.0, 3.0, 5.0) cm, (-3.0, 0.0, 5.0) cm and (0.0,
-3.0, 5.0) cm. All distances are in centimeters.

8.2 The SORDS Tri-modal Imager

The SORDS trimodal imager (TMI) is a gamma-ray imaging device designed to locate

and identify threat point sources of radiation from a moving platform [35,36]. Because

such point sources will typically be embedded in a background of naturally occurring

radiation covering a similar energy spectrum, some means must be applied to separate

sources from background. The system is designed to be capable of of imaging both

low-energy (<1 MeV) and high-energy (1-3 MeV) gamma rays using three imaging

modalities: Compton imaging (CI), coded aperture imaging (CA) [37,38] and shadow

imaging. The capability of the TMI to achieve both CI and CA imaging is through

the use of active, rather than passive, mask elements in the coded aperture array.

The TMI achieves hybrid imaging by using active mask elements [36]. Photons

which interact in both an active mask element and the absorbing back detector are
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Figure 8.4: Simulated 400 keV line source at z=10.0 cm, centered in x and ranging
from -2.5 cm to 2.5 cm in y after 75 iterations of 3DMLEM. All distances are in
centimeters.

treated as CI events, while photons interacting in only the back detector are treated

as CA events. A variety of means might be used to fuse the two information sources.

Fusing the two imaging modalities takes advantage of the fact that the background

is imaged differently in the two modes whereas the point source is the same. Figure

8.5 shows an illustration of the TMI truck model used for imaging development.

The front TMI detectors are 5 x 5 x 2 inch NaI(Tl) crystals and the back detectors

are 2.5 x 3 x 24 inch NaI(Tl) bars. Position resolution of about 1.85 inches (FHWM

@ 662 keV) along the length of the bars is achieved by charge division [36]. Models

of the detectors’ physical structure and energy resolution were created for both the

front and back detectors. Much of the development and testing of the imaging meth-
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Figure 8.5: Illustration of the TMI truck model used for imaging development.

ods and behavior of the TMI were performed using simulation methods similar to

the validated PCI model. Results from these models are shown in Fig. 8.6 showing

excellent agreement between experimental and simulated data for both front and back

detectors.

Also important in the TMI simulation model is the accurate model of background.

To this end, a detailed model was developed for a 0.5 meter deep volume of soil of

uniform density (1.5 g/cm3) with the 100 most intense gamma-ray lines propagated

out. In order to validate the soil model a simple mass model was created to match the

detector configuration for existing background data. Figure 8.7 shows the comparison

of the simulated background and measured background from the real TMI truck. In

this figure there is no arbitrary scaling of the data, showing excellent agreement. The

40K line is slightly higher in the simulated data, as the natural background rate varies

from the averages taken from around the United States used to develop the model.
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Figure 8.6: Validation of TMI detector simulations.

The purpose of the TMI is to locate and identify threat sources while the truck-

mounted system is moving. Preliminary testing of the system demonstrates the ability

to detect sources while moving. Figure 8.8 shows the reconstructed image of an 876

µCi 137Cs source at 75 m closest approach with the TMI moving at 7 mph. No axes are

shown on the image because they correspond to arbitrary row and column numbers

in the three dimensional imaging space. Positions of the pixels are relative to the first

imaged event. The actual position of a source is reported in geo-coordinates (latitude,

longitude and altitude). Figure 8.9 shows the actual path and location of the detected

source. The square symbol represents the average location of the TMI for the data

used to image the source. The circle denoting the isotope (137Cs) is the reported geo-

location and the path of travel is shown with the truck model. The shaded area shows

the region of data used to image the source.
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Figure 8.7: Comparison of measured and simulated background spectra for both CA
and CI data sets. No arbitrary scaling.

Figure 8.8: Reconstructed 876 µCi, 137Cs source at 75 m closest approach and 7 mph.
The lack of axis is explained in the text.
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Figure 8.9: Google earth view of the located and identified source. The square symbol
represents the average location of the TMI for the data used to image the source.
The circle denoting the isotope (137Cs) is the reported geo-location and the path of
travel is shown with the truck model. The shaded area shows the region of data used
to image the source.
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Chapter 9

CONCLUSIONS

Simulations of an existing prototype Compton imager have been performed and val-

idated. They can be used to investigate the efficiency and performance of future

instruments. Measurements taken with the prototype have demonstrated the ability

to image single and multiple, point-like sources as well as complex extended source

distributions with the help of advanced imaging algorithms. The angular resolution of

the system was measured to be 0.156 radians FWHM (8.94◦). An algorithm to deter-

mine the near field source-to-detector distance has been developed and demonstrated.

Improved back-projection algorithms as well as maximum likelihood algorithms have

been developed and demonstrated to aid in both point-like and extended source imag-

ing. Future work will include continued development of the algorithms presented in

this thesis as well as applying the simulation and analysis techniques learned.
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